

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶):

DATE: (日期):2015-08-11

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GT 63V680µF(\u03c612.5X25)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPI	JER	CU	STOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
郭梦玉	王国华		

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		SPECIFICAT	ALTERNATION HISTORY RECORDS				
Rev.	Date	GT SERIE Mark	ES Page	Contents	Purpose	Drafter	Approver
KCV.	Date	Widik	1 age	Contents	T urpose	Dianci	Approver

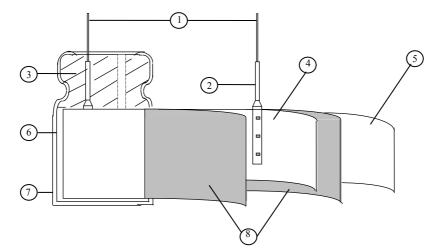
	MAN YUE ELECTRONICS COMPANY LIMITED				CA SPEC	CTROLY PACITO CIFICAT T SERIES			S	AMX	ON			
Tab	le 1 Product Dimen Safety vent for $\geq \Phi$ 6.3		5 min	aracteristic			F±0.5	β Φ * If it is	20:α=1.5; L 2D<20:β=0. flat rubber, urface.	5; ΦD≥	20 : $\beta = 1.0$		ne flat r	ubber
N 0.	SAMXON Part No.	WV (Vdc)	Cap. (µF)	Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105°C 100KHz (mA rms)	Impedance at 20°C 100kHz (Ωmax)	Load lifeti me (Hrs)		ension (mm) F	фd	Sleev
1	EGT687M1JI25RR**P	63	680	-20%~+20%	-40~105	0.09	428	922	0.096	7000	12.5X25	5.0	0.6	PET

Version	01	Page	2

1. Application		Sheet
	n	4
2. Part Numb		4
3. Constructio		5
4. Characteris	stics	5~10
4.1 Rated voltage &	k Surge voltage	5~10
4.2 Capacitance (T	olerance)	
4.3 Leakage curren		
4.4 tan δ		
4.5 Terminal streng	gth	
4.6 Temperature cl	haracteristic	
4.7 Load life test		
4.8 Shelf life tes	t	
4.9 Surge test		
4.10 Vibration		
4.11 Solderabilit	ty test	
4.12 Resistance		
4.13 Change of t	-	
4.14 Damp heat 1	test	
4.15 Vent test	nissible (ripple current)	
	ronment-related Substances to be Controlled ('Controlled	ed 11
	pplication Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES


This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Description applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Bar Annue System Top Top Top Top Top Top Top Top Top Top	1.												
2. Part Number System 1 2 3 4 5 6 7 EGGS 0APACITANCE NTLL 0 1 104 5 6 7 CAPACITANCE NTLL 0 1 104 5 6 7 0 1 104 5 7 0 1 105 7 0 105 7 0 10								lytic ca	apacitor (1	on type) u	seu n	ii electronic equij	pinent.
E.G.S. 10.5 M TOL Output CARE Diff TOL Output Color Diff TOL Diff TOL Diff TOL Diff TOL Diff D	2.		-		1 2								
DERNES CARACTIVANCE TOL. VOLTAGE CASE BIZE TYPE PLANTON INFERIAL Series CapACITANCE TOL. VOLTAGE CASE BIZE TYPE PLANTON INFERIAL Series CapACITANCE 104 2 0.01 104 1 104 ESS 0.22 224 ±10 K 63.00 4.00 <t< td=""><td>Ľ</td><td>1 2</td><td>3 4</td><td>56</td><td>3 7</td><td>]</td><td>89</td><td>[</td><td>10 11 12</td><td>2 13</td><td>14</td><td>1516</td><td>17</td></t<>	Ľ	1 2	3 4	56	3 7]	89	[10 11 12	2 13	14	1516	17
Series Exp Code 0.1 Tolerance (%) 1.0 Code 1.5 Voltage (WV) 2.6 Code 0.5 Case Status 3.3 Feature 7.0 Code 7.4 Code 0.1 SAUCON Product Line (manual use only (manual use on	E	EG	<u>s 1</u>	0 5	<u>5 M</u>		<u>1 H</u>		D 1 1	<u> </u>	С	SA	Ρ
BRN 0.1 104 ±.5 J 2 0.0 Newsware Pada buk FR Pada buk FR BRS 0.22 2.24 a10 K 8.3 C Arrow Taylo Arr		SERIES	CAP		CE TO		VOLTAGE	-	CASE SIZE	TYP			
EVE 0.1 104 ±.5 J 2.5 0.2 3.5 Padia bulk Padia bul			Cap(MFD)	Code	Tolerance (%)	Code				Feature	Code	SAMXON Product Li	ne
EXC 0.33 334 ±10 K 0.0 0.0 0.3 <th0.3< th=""> <th0.3< th=""> <th0.3< th=""></th0.3<></th0.3<></th0.3<>	F	EKF	0.1	104	±5	J	2.5	0E	3 B	Radial bulk	RR		
BKC EXT 0.33 334 ±15 L 8 0K 8 E C C/mm <pich< th=""> TT EXT 0.47 474 ±15 L 125 13 1 23 1 23mm<pich< td=""> 1 105 ±20 M 200 10 145 A 35mm<pich< td=""> TV 5mm<pich< td=""> TV 5mm<pich< td=""> TV 5mm<pich< td=""> PET P EGG 2.2 2.25 ±30 N 320 11 13 1 5mm<pich< td=""> TV TV TV</pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<></pich<>	F	EGS	0.22	224	±10	к	6.3	OJ	4 C 5 D 6.3 E	Ammo Tap	oing		
E25 FGC 0.47 474 125 18 33 4 2.5mm Plch TU 607 1 105 #20 M 20 10 14.5 4 3 4	E	EKG EOM	0.33	334	. 45		1	1A	8 F 10 G	2.0mm Pitch	Π		
EGY EGO EGO EGO EGO EGO EGO EGO EGO EGO EGO	F	EZS	0.47	474	±15	-			13 J 13.5 V	2.5mm Pitch	тυ		
EGC 2.2 225 ±30 N 30 11 155 7 Domm Plich TC PET P EGS 3.3 335 40 W 35 11V 105 1 Lead Cut & Form Lead Cut & Form CE-Type CE CE <type< td=""> CE CE<type< td=""> CE CE</type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<></type<>	F	EGT	1	105	±20	м			14.5 A	3.5mm Pitch	т∨	Sleeve Material	Code
ERS 3.3 335 -40 W 35 1V 22 M Lead Cut & Form ERR 4.7 475 -20 A 850 11H 35 0 CE 775 11 355 19 CE 775 11 355 19 CE 775 11 655 19 CE 797 11 100 775 11 655 15 65 18 100 20 775 11 655 15 KD 797 100 20 775 11 655 17 KD 797	E	EGE EGD	2.2	225	±30	N			18 L	5.0mm Pitch	тс	PET	Р
EED ERD ERD ERD ERD ERD ERD ERD ERD ERD	F	ERS	3.3	335	-40 0	w	35	1V	20 M 22 N		Form		
EED ERD ERD ERD ERD ERD ERD ERD ERD ERD	F	ERR	4.7	475	-20	A	42	1 M	25 O 30 P 34 W	СВ-Туре	СВ		
ERC EAP EAP EAP EAP EAP EAP EAP EAP EAP EAP	E	ERE	10	106	<u> </u>		57	1L	35 Q 40 R	СЕ-Туре	CE		
ERC EAP EAP EAP EAP EAP EAP EAP EAP EAP EAP	F	EBD	22	228		С	71	15	45 6 51 S	HE-Type	HE		
ERW ELP 100 107 -10 0 B 100 2A Handbox 5 EH-Type EH ELP 220 227 -10 -20 V 125 226 77	E	ERB ERC	33	336	-20 +40	×	80	1K	63.5 I 76 U 80 8	КД-Турө	КD		
ERV E 100 107 -10 B 100 220 227 -10 C B 120 220 EH-Type EH EOP EOP 220 227 -10 V 150 22 54 54 56 66 FH-Type EH EOP ETP 330 337 -10 Q 180 220 12 13 13 13 13 13 13 13 13 13 13 13	E	ENP	47	476	-20 +50	s	90	19	90 X 100 Z	FD-Type	FD		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ŀ	ERY	100	107	-10 0	в		20	4.5 45 5 05	ЕН-Туре	EH		
ETP EUP 330 337 -10 Q 160 2C 102 12 12 12 SNW EUP 470 477 477 -10 T 2200 228 -10 220 220 228 -10 -10 -10 200 20 22 5 -10 220 20 228 -10 -10 -10 200 22 12.3 13.5 12.2 13.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 50 10 <td< td=""><td>E</td><td>EQP</td><td>220</td><td>227</td><td>-10 +20</td><td>v</td><td></td><td></td><td>7.7 77</td><td>PCB Tem</td><td>nial</td><td></td><td></td></td<>	E	EQP	220	227	-10 +20	v			7.7 77	PCB Tem	nial		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	ETP	330	337		Q			11 11		sw		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F	EKP	470	477		т			12 12 12.5 1B	Snap-in	sx		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	EFP ESP	2200	228					13.5 10		sz		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	EGP	22000	229			250	2E	25 25 29.5 2J 30 30	Lug	SG		
EWF EWKS EWH EWH EWH EWH EWH EWH EWH EWH EWH EWH		EWT	33000	339			300	21	31.5 3A 35 35		05		
EWVL EWB VSS VNS VNS VNS VNS VNS VNS VNS VNS VNS	E	EWF	47000	479			315	2F	50 50 80 80		06		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E	EWL	100000	10T	+20		350	2V	105 1K	Screw	т5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F	VNS	150000	15T	+30		375	2Q	120 1N 130 1P		т6		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E	VKM	220000	227	+50		400	2G	150 1R 155 1E		D5		
+20 D 500 2H 180 1U 1000000 10M +20 D 550 25 190 1V 1500000 15M +10 +50 Y 600 26 215 2A 1500000 15M +10 +1 630 2J 220 2N 2200000 22M +10 H 220 2N 250 2R 3300000 33M	E	VZS	330000	33Т	+15	z	450	2W	165 1F 170 1T		D6		
3300000 33M			1000000	10M	+20		550	25	180 111				
3300000 33M			1500000	15M	+50				215 2A 210 2M				
3300000 33M			2200000	22M	+30	н			240 20 250 2R				
			3300000	33M					260 28 270 2T				

Version 01 Page 4

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		Ρασρ	5
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

WV (V.DC) 6.3 10 16 25	35 50 63	100
SV (V.DC) 8 13 20 32	44 63 79	125
	50 400 420 450 .00 450 470 500	
<pre><condition> Measuring Frequency : 120Hz±12Hz</condition></pre>		
Measuring Voltage : Not more than 0.5 Measuring Temperature : $20\pm 2^{\circ}C$	5Vrms	
<criteria> Shall be within the specified capacitance toler</criteria>	rance.	
<condition> Connecting the capacitor with a protective r minutes, and then, measure Leakage Current. <criteria> Refer to Table 1</criteria></condition>	resistor $(1k \Omega \pm 10 \Omega)$ in serie	es for
<condition> See 4.2, Norm Capacitance, for measuring fre <criteria> Refer to Table 1</criteria></condition>	equency, voltage and temperatur	e.
 <condition> Tensile Strength of Terminals Fixed the capacitor, applied force to the tenseconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the 90° within 2~3 seconds, and then bent it for seconds. </condition> 	e terminal (1~4 mm from the rub r 90° to its original position with	ber) f
Diameter of lead wire (kgf)	(kgf)	
	, , ,	
Fixed the capacitor, applied force to bent the 90° within 2~3 seconds, and then bent it for seconds.	r 90° to its original posi ce N Bending for (kgf) .) 2.5 (0.25) 5 (0.51)	tion wit ce N)

Version	01		Page	6
---------	----	--	------	---

F

		<condition< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></condition<>								
		ST	EP Testi		rature(°C)			Time		
			1	20 ± 2	2		to reach		1	
			2	-40(-25)	± 3	Time	to reach	thermal e	equilibri	um
			3	20 ± 2	2	Time	to reach	thermal e	equilibri	um
			4	$105\pm$	2	Time	to reach	thermal e	equilibri	um
			5	20 ± 2	2	Time	to reach	thermal e	equilibri	um
		<criteria< td=""><td> ></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></criteria<>	>							
			shall be with			4.4The le	akage cu	irrent me	asured s	hall not
	Tommomotiono		n 8 times of i	-						
	Temperature characteristi		p 5, tan δ sha		nin the lin	it of Iter	n 4.4The	leakage	current	shall no
4.6	cs		the specifie			111		1 .	641 61	1
		table.	°C (-25°C), in	mpedance	(z) ratio s	nall not e	exceed th	e value o	of the fol	lowing
		-	/oltage (V)	6.3	10	16	25	35	50	63
		Z-25°C	/Z+20°C	4	3	2	2	2	2	2
		Z-40°C	/Z+20°C	8	6	4	3	3	3	3
		Working V	Voltage (V)	100]					
			/Z+20°C	2						
		-	/Z+20°C	3						
		1	itance value	> 1000 µ	F. Add 0.:	5 per ano	ther 1000)µF for	Z-25/Z+	20°C
		1								20 C.
						-				
		Capacitanc	ce, tan δ , and	d impedar	Add 1.0	per anot	her 1000	μ F for Z		
		<condition< td=""><td>on></td><td>-</td><td>Add 1.0 ace shall b</td><td>e measur</td><td>her 1000 ed at 120</td><td>μ F for Z Hz.</td><td>Z-40°C/Z</td><td>Z+20℃.</td></condition<>	on>	-	Add 1.0 ace shall b	e measur	her 1000 ed at 120	μ F for Z Hz.	Z-40°C/Z	Z+20℃.
		<condition< td=""><td>on> g to IEC6038</td><td>34-4No.4.</td><td>Add 1.0 ace shall b 13 method</td><td>e measur s, The ca</td><td>her 1000 ed at 120 pacitor is</td><td>µ F for Z Hz. s stored a</td><td>Z-40°C/Z</td><td>Z+20°C.</td></condition<>	on> g to IEC6038	34-4No.4.	Add 1.0 ace shall b 13 method	e measur s, The ca	her 1000 ed at 120 pacitor is	µ F for Z Hz. s stored a	Z-40°C/Z	Z+20°C.
		Condition According 105°C ±2	on> g to IEC6038 2 with DC bi	34-4No.4. as voltage	Add 1.0 ace shall b 13 method plus the r	s, The ca	her 1000 ed at 120 pacitor is le curren	μ F for Z Hz. s stored a t for Tab	Z-40°C/Z	Z+20°C.
		Condition According 105°C ±2 DC and r	on> g to IEC6038 2 with DC bi ipple peak	34-4No.4. as voltage voltage sł	Add 1.0 ace shall b 13 method plus the r nall not ex	s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren e rated w	μ F for Z Hz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th
	Lord	Condition According 105°C ±2 DC and r product sh	on> g to IEC6038 2 with DC bi ripple peak nould be test	34-4No.4. as voltage voltage sh ed after 16	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec	s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren e rated w	μ F for Z Hz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th
47	Load	Condition According 105°C ±2 DC and r product sh	on> g to IEC6038 2 with DC bi ripple peak nould be test uld meet the	34-4No.4. as voltage voltage sh ed after 16	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec	s, The ca ated ripp	her 1000 ed at 120 pacitor is le curren e rated w	μ F for Z Hz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th
4.7	Load life test	Condition According 105°C ±2 DC and r product sh result sho <criteria< p=""></criteria<>	on> g to IEC6038 2 with DC bi ripple peak nould be test uld meet the	34-4No.4. as voltage voltage sh ed after 16 following	Add 1.0 ace shall b 13 method plus the r hall not ex b hours rec g table:	s, The ca ated ripp cceed the	her 1000 ed at 120 pacitor is le curren e rated w ime at at	μ F for Z Hz. s stored a t for Tab yorking y	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th
4.7	life	Conditional According 105°C ± 2000 C and reproduct shore a contract of the characterized o	on> g to IEC6038 2 with DC bi ripple peak nould be test uld meet the a>	34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet th</u>	Add 1.0 ace shall b 13 method plus the r hall not ex b hours rec g table:	s, The ca ated ripp acced the overing t	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments.	μ F for Z Hz. s stored a t for Tab vorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th
4.7	life	Conditional According 105°C ± 2000 C and reproduct shores are shored as the chara of the chara for the chara fo	on> g to IEC6038 2 with DC bi ipple peak nould be test uld meet the a> acteristic sha	34-4No.4. as voltage voltage sh ed after 16 following Il meet th tt	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec 3 table: e followin	per anot e measur s, The ca ated ripp acceed the overing t <u>g require</u> 4.3 shall	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisfi	μ F for Z Hz. s stored a t for Tab corking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then th
4.7	life	Conditional According 105°C ± 2000 C and reproduct shores are shored as the chara of the chara for the chara fo	on> g to IEC6038 2 with DC bi ipple peak nould be test uld meet the a> acteristic sha akage curren pacitance Cl	34-4No.4. as voltage voltage sh ed after 16 following Il meet th tt	Add 1.0 ace shall b 13 method plus the r pall not ey 6 hours rec g table: <u>e followin</u> Value in	s, The ca ated ripp acceed the overing t g require 4.3 shall 20% of	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va	μ F for Z HZ. s stored a t for Tab vorking v mospher ied ilue.	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20℃. erature of he sum of Then th
4.7	life	Conditional According 105°C ± 2000 C and reproduct shores a contract of the character of	on> g to IEC6038 2 with DC bi ipple peak nould be test uld meet the a> acteristic sha akage curren pacitance Cl	34-4No.4. as voltage voltage sh ed after 16 following Il meet th tt	Add 1.0 ace shall b 13 method plus the r all not ex b hours rec g table: e followin Value in Within <u>+</u>	s, The ca ated ripp cceed the overing t g require 4.3 shall 20% of than 200	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ied ilue. specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20℃. erature of he sum of Then th
4.7	life	Condition According 105°C ±2 DC and r product sho <criteria The chara Lea Ca tan Ap</criteria 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance	34-4No.4. as voltage voltage sh ed after 16 following Il meet th tt	Add 1.0 ace shall b 13 method plus the r hall not ex b hours rec b table: e followin Value in Within <u>+</u> Not more	s, The ca ated ripp cceed the overing t g require 4.3 shall 20% of than 200	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the	μ F for Z Hz. s stored a t for Tab rorking v mospher ied ilue. specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20℃. erature of he sum of Then th
4.7	life	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Ca tan Ap <condition< td=""><td>on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance</td><td>34-4No.4. as voltage voltage sh ed after 16 following Il meet the nange</td><td>Add 1.0 ace shall b 13 method plus the r nall not ex 6 hours rec 9 table: e followin Value in Within <u>+</u> Not more There sha</td><td>s, The ca ated ripp acced the overing t <u>g require</u> 4.3 shall 20% of than 200 all be no</td><td>her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va leakage c</td><td>μ F for Z Hz. s stored a t for Tab rorking v mospher ied ilue. specifie of electro</td><td>Z-40°C/Z at a temp ole 1. (T voltage) ic condit</td><td>z+20℃. erature of he sum of Then the tions. The</td></condition<></criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance	34-4No.4. as voltage voltage sh ed after 16 following Il meet the nange	Add 1.0 ace shall b 13 method plus the r nall not ex 6 hours rec 9 table: e followin Value in Within <u>+</u> Not more There sha	s, The ca ated ripp acced the overing t <u>g require</u> 4.3 shall 20% of than 200 all be no	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va leakage c	μ F for Z Hz. s stored a t for Tab rorking v mospher ied ilue. specifie of electro	Z-40°C/Z at a temp ole 1. (T voltage) ic condit	z+20℃. erature of he sum of Then the tions. The
4.7	life	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Ca tan Ap <conditi The capacit</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance	34-4No.4. as voltage voltage sh ed after 16 following Il meet the tange stored wi	Add 1.0 ace shall b 13 method plus the r nall not ex 6 hours rec 9 table: e followin Value in Within <u>+</u> Not more There sha	s, The ca ated ripp acceed the overing t <u>g require</u> 4.3 shall 20% of than 200 all be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va leakage o ed at a te	 µ F for Z µ F for Z µ Hz. s stored a t for Tab rorking v mospher ied ilue. specifie of electro mperatur 	Z-40°C/2 at a temp ole 1. (Tr voltage) ic condit ic condit	$\pm 2^{\circ}C$.
4.7	life	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Lea Ca tan Ap <conditi The capacin 1000+48/</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the acteristic sha akage curren pacitance Cl δ opearance on> tors are then 0 hours. Foll	84-4No.4. as voltage voltage sh ed after 16 following Il meet the t nange stored wi lowing thi	Add 1.0 ace shall b 13 method plus the r nall not ey b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta s period t	s, The ca ated ripp acceed the overing t <u>g require</u> 4.3 shall 20% of than 200 all be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at <u>ments.</u> be satisfi initial va 0% of the leakage of ed at a te tors shal	 µ F for Z Hz. s stored a t for Tab corking v mospher ied alue. specifie of electron 	Z-40°C/2 at a temp ole 1. (T voltage) ic condit ic condit d value. lyte.	$\pm 2^{\circ}C$. erature of he sum of Then the tions. The $\pm 2^{\circ}C$ for m the te
4.7	life test	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Lea Ca tan Ap <conditi The capacit 1000+48/ chamber a</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the acteristic sha akage curren pacitance CH δ pearance tors are then 0 hours. Foll and be allow	84-4No.4. as voltage voltage sh ed after 16 following Il meet that hange stored wi lowing thi yed to stal	Add 1.0 ace shall b 13 method plus the r nall not ex b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta s period th pilized at	s, The ca ated ripp acceed the overing t <u>g require</u> <u>4.3 shall</u> <u>20% of</u> than 200 all be no	her 1000 ed at 120 pacitor is le curren e rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal uperature	 µ F for Z Hz. s stored a t for Tab vorking v mospher ied ilue. specifie of electro mperatur l be remo f or 4~8 	Z-40°C/2 at a temp ole 1. (T voltage) ic condit ic condit d value. ad value. ad value. ad value. ad value. ad value.	$\pm 2^{\circ}C$ for the terms of the sum of the
4.7	life	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Lea Ca tan Ap <conditi The capacin 1000+48/ chamber a shall be c</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the acteristic sha akage curren pacitance Cl δ opearance on> tors are then 0 hours. Foll	34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> the nange stored wi lowing thi ved to stal a series	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec 3 table: e followin Value in Within <u>4</u> Not more There sha th no volta s period ti pilized at	s, The ca ated ripp acceed the overing to g require 4.3 shall 20% of than 200 all be no age applie ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ Hz. s stored at for Tab vorking v mospher ied ilue. e specifie of electro mperatur l be remained if or 4~8) with E 	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical for the sum of
	life test Shelf	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Lea Ca tan Ap <conditi The capacin 1000+48/ chamber a shall be c</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> the nange stored wi lowing thi ved to stal a series	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec 3 table: e followin Value in Within <u>4</u> Not more There sha th no volta s period ti pilized at	s, The ca ated ripp acceed the overing to g require 4.3 shall 20% of than 200 all be no age applie ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ Hz. s stored at for Tab vorking v mospher ied ilue. e specifie of electro mperatur l be remained if or 4~8) with E 	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical for the sum of
	life test Shelf life	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Ca tan Ap <conditi The capacin 1000+48// chamber a shall be c applied for</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> the nange stored wi lowing thi ved to stal a series	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec 3 table: e followin Value in Within <u>4</u> Not more There sha th no volta s period ti pilized at	s, The ca ated ripp acceed the overing to g require 4.3 shall 20% of than 200 all be no age applie ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ Hz. s stored at for Tab vorking v mospher ied ilue. e specifie of electro mperatur l be remainant of the second of	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical for the sum of
	life test Shelf life	<condition According 105°C ± 2 DC and r product sh result sho <criteria The chara Ca tan Ap <conditi The capacin 1000+48// chamber a shall be c applied for</conditi </criteria </condition 	on> g to IEC6038 2 with DC bi ipple peak y nould be test uld meet the a> acteristic sha akage curren pacitance Ch δ pearance tors are then 0 hours. Foll and be allow connected to or 30min. Aft	34-4No.4. as voltage voltage sh ed after 16 following <u>ll meet the</u> the nange stored wi lowing thi ved to stal a series	Add 1.0 ace shall b 13 method plus the r nall not ex 5 hours rec 3 table: e followin Value in Within <u>4</u> Not more There sha th no volta s period ti pilized at	s, The ca ated ripp acceed the overing to g require 4.3 shall 20% of than 200 all be no age applie ne capaci room ten esistor(1k	her 1000 ed at 120 pacitor is le curren rated w ime at at ments. be satisfi initial va 0% of the leakage of ed at a te tors shal perature $\pm 100 \Omega$	 µ F for Z µ F for Z µ Hz. s stored at for Tab vorking v mospher ied ilue. e specifie of electro mperatur l be remainant of the second of	z-40°C/2 at a temp ble 1. (T voltage) ic condit ic condit d value. lyte. re of 105 boved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for mathematical for the sum of

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet the	
		Leakage current	Value in 4.3 shall be satisfied
1.0	Shelf	Capacitance Change	Within $\pm 20\%$ of initial value.
4.8	life	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
			ored more than 1 year, the leakage current may
			hrough about 1 k Ω resistor, if necessary.
		<condition></condition>	
			capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor
			d to 1000 cycles, each consisting of charge of 30 ± 5 s
		followed discharge of 5 min 30	
		The test temperature shall be	
		C _R :Nominal Capacitance (µ I	F)
	Surge	<criteria></criteria>	Not more than the aposition value
4.9	test		Not more than the specified value.
		Capacitance Change	Within $\pm 15\%$ of initial value.
		tan δ	Not more than the specified value.
		Appearance	There shall be no leakage of electrolyte.
		Attention:	
			at abnormal situation only. It is not applicable to such
		over voltage as often applied.	
4.10	Vibration test	perpendicular directions. Vibration frequency rang Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter gree in place with a bracket. 4mm or less	ge : 10Hz ~ 55Hz : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute eater than 12.5mm or longer than 25mm must be fixed Within 30°
		Appearance of	To be soldered ms shall be tested: o intermittent contacts, open or short circuiting. o damage of tab terminals or electrodes. o mechanical damage in terminal. No leakage electrolyte or swelling of the case. e markings shall be legible.

	r		
		D	_
Version	01	Page	8
V CI SION	01		0
		0	

r-

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

		<condition> The capacitor shall be tested up</condition>	nder the following	conditions:	
		Soldering temperature	: 245±3°C		
		Dipping depth	: 2mm	,	
4.11	Solderability test	Dipping speed	: 25±2.5mm : 3±0.5s	n/s	
	test	Dipping time < Criteria >	. 5±0.58		
			A minimur	n of 95% of the surface	being
		Coating quality	immersed		
		<condition></condition>	11 h . :		5°Cf==10
		Terminals of the capacitor shall			
		1 seconds or $400 \pm 10^{\circ}$ C for 3^{+1}_{-0}			
	D	Then the capacitor shall be left for 1~2 hours before measuren		temperature and norma	l humidity
4.12	Resistance to solder heat	< <u>Criteria></u>	iciit.		
7.12	test	Leakage current	Not more than t	he specified value.	
		Capacitance Change	Within $\pm 10\%$ c	of initial value.	
		tan δ	Not more than t	he specified value.	
		Appearance	There shall be n	o leakage of electrolyte	e.
		<condition></condition>			
		Temperature Cycle:According			shall be
		placed in an oven, the conditio	-	Time	
		Temper (1)+20℃	lature	≤ 3 Minutes	
		(1)+20 C (2)Rated low temperature	$(40^{\circ}C)(25^{\circ}C)$	30 ± 2 Minutes	
	Change of			30 ± 2 Minutes 30 ± 2 Minutes	
4.13	temperature test	(3)Rated high temperature (1) to (2)=1 cucle, total 5		30 ± 2 Willines	
	test	(1) to (3)=1 cycle, total 5 (Criteria >	cycle		
		The characteristic shall meet th	e following require	ement	
			Not more than the s]
		tan δ	Not more than the s	specified value.	
		Appearance	There shall be no le	eakage of electrolyte.]
		<condition></condition> Humidity Test:			
		According to IEC60384-4No.4	12 methods capa	citor shall be exposed f	for 500 ± 8
		hours in an atmosphere of 90~	· 1	-	
		meet the following requirement		,	U
		<criteria></criteria>			I
4.14	Damp heat		more than the spe		
	test	1 0	$\frac{1}{20\%}$ of initiation $\frac{1}{20\%}$	al value. of the specified value.	
			ere shall be no leak	•	
					l

Version	01	Page	9

ELECTROLYTIC CAPACITOR SPECIFICATION GT SERIES

4.16 Maximum permissible (ripple current) 4.16 Maximum $p_{errmissible}$ ripple	4.15	Vent test	<condition>The following test only apply to those products with vent products at diameter $\ge \emptyset 6.3$with vent.D.C. testThe capacitor is connected with its polarity reversed to a DC power source. Then a current selected from below table is applied.<table 3="">$\overline{\text{Diameter (mm)} \ DC \ Current (A)}}{22.4 \ or \ less \ 1}$Over 22.4 \ 10<criteria>The vent shall operate with no dangerous conditions such as flames or dispersion of</criteria></table></condition>
	4.16	permissible (ripple	<condition>The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage.Frequency Multipliers:$\boxed{Coefficient}$$50$$120$$300$$1k$$100k$$15~33$$0.45$$0.55$$0.70$$0.90$$1.00$$39~300$$0.60$$0.75$$0.90$$0.98$$1.00$</condition>

Version 01 Page 10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
ficavy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D · (1	Polybrominated biphenyls (PBB)
Brominated	Polybrominated diphenylethers(PBDE) (including
organic	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	pounds(TBT)
Triphenyltin con	npounds(TPT)
Asbestos	
Specific azo con	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	ber
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzoti	riazole

Version 01		Page	11
------------	--	------	----

Attachment: Application Guidelines

1.Circuit Design

(2)

- 1.1 Operating Temperature and Frequency
- Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 b) At human temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
 - Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tanb increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy

See the file: Life calculation of aluminum electrolytic capacitor

1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

1.5 Capacitor Mounting Considerations

(1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01 Page 12

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification. 1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure. 2.Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 2.2 Capacitor Insertion (1) Verify the correct capacitance and rated voltage of the capacitor. (2) Verify the correct polarity of the capacitor before inserting. (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.

- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.
- 2.8 Mounting Adhesives and Coating Agents
 - When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

- 3.1 Environmental Conditions
 - Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
- If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte of gas is ingested by month, gargie with water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000 Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.